02A3724	垰村	修
02A3753	原内	迅
担当教員	前田臣	包刀

1. はじめに

道路橋示方書では流動化を考慮した設計は原則 として橋脚基礎に適用することとなっており、橋台 基礎への適用に関しては曖昧なものになっている。

過去に経験した大規模地震における被害状況に 着目すると写真1のとおり、液状化が生じた橋台で は背面盛土は前面側への変形をおこすことなく、鉛 直方向に沈下する形態を示しており、橋台前面への 大きな流動化が作用しているとは考え難い。

以上より、本研究では道路橋示方書以外の基準を 基に、液状化が生じる地盤上の橋台に働く流動化の 影響について検討を行う。

図1に地盤流動の影響を考慮する場合の断面力の 算出方法を示す。基礎に作用させる流動力は、地盤 流動量 $\delta_{\rm G}$ を地盤バネ \mathbf{k} を介して基礎に作用させ、地 盤と基礎の相対変位($\delta_{\rm G}$ - $\delta_{\rm F}$)に相当する流動力を 作用させる。そのため、地盤流動量の大きさが基礎 形状に大きく影響するため、実際の現象を正確にと らえられる解析を行う必要がある。通常、二次元有 限要素解析によって地盤流動量を算出するが、橋台 背面盛土のように横断方向幅が有限長の場合には 過大評価する。そこで、パラメータ解析により地盤 流動量の三次元効果について検討する。また、三次 元効果を考慮した地盤流動量を橋台基礎に作用さ せ、基礎の試設計も行った。

2. 解析概要

図2は二次元解析モデルを示したものである。地 層は地表面からAs1,Asc,Ac2-1,Ac2-2,As2の水平 な5層から構成され、As1を液状化層とする。その上 に盛土が有り、X方向幅は50.0mとする。図3に三次 元解析モデルを示す。X-Y方向は、図2と同様とし、 盛土の横断方向幅(Z方向幅)の上面幅11.0m、のり 面勾配1:1.8とする。

表1に解析条件を示す。解析ケースは、盛土高、液 状化層厚、液状化層の初期変形係数の全組合せ(18 ケ ース)について、二次元解析と三次元解析を行った。

写真1 鳥取県西部地震の被災例

図1 液状化に伴う流動圧の概念

図2 二次元解析モデル

表1 解析条件

盛土高 I	D	(m)	5.0 , 10.0
液状化層厚 H	Н	(m)	5.0, 10.0, 15.0
初期変形係数α	• E ₀	(kN/m ²)	10000 , 19000 , 40000

表2に解析に用いた各層の物理定数を示す。液状化 後の変形係数は液状化層(Asl層)では初期値の1/100、 盛土では1/10に低減した。また、ポアソン比は液状化 層のみを液状化前後で変化させた。

解析は液状化前・後の地盤の変形係数を用いた有限 要素法による自重解析を行い、その相対変位量を流動 化による地盤変位とする。解析ソフトは Mr.SOIL3D

((株) CRC 総合研究所)を使用した。

3. 解析結果

図 4、5 は解析条件 D=5.0m,、H=5.0m、 α E₀=10000kN/m²における二次元解析と三次元解析の地 盤変形図 (X-Y 方向)をそれぞれ示したものである。 液状化層 (As1)の変形は、盛土によって押し出され るような形となる。二次元解析において、盛土先端よ り右側の地表面が盛り上がっている。また、盛土先端 部付近で背面方向に回転するような変形がみられる。 一方、三次元解析でのそのような変状はみられない。

図 6 に D=10.0m、H=10.0m の液状化層の流動量(X 方向の変位)の深度分布を示す。算出位置は盛土先端 位置(図 3 の"A"位置)である。変形は層中心当たり の深度で最大となるような形となっている。これは液 状化層の変形係数が上下の層に比べて非常に小さいた め、上下の層に拘束されるためである。

表3に液状化層の最大変位を示す。αE₀=10000kN/m² の変位を基準として、19000、40000kN/m²における変 位の比率を算出すると、解析法に関係なくそれぞれ0.6、 0.3 程度であった。これは、変形係数の比率の逆数程度 である。また、液状化層厚に着目すると、解析法によ る違いはなく、層厚比と一致する。一方、盛土高に対 しては、D=5.0mを基準としてD=10.0mの変位の比率 を算出してみると、二次元解析では1.9程度であった。 これは、盛土は液状化層に対し荷重として作用するた め、盛土高さ比と変位の比は一致する。しかし、三次 元解析では、2.4 程度となる。三次元解析モデルの盛土 形状は、上面幅とのり面こう配を一定にしているので、 盛土高によって横断方向幅が異なる。このため、盛土 高さは荷重と流動量の三次元効果に影響するために、 二次元解析のように盛土高さ比と変位比は一致しない。

4. 地盤流動量の評価

流動量の三次元効果の評価は、盛土先端位置における液状化層の X 方向最大流動量の三次元解析δx(3D) と二次元解析δx(2D)の比率によって行う。

図3 三次元解析モデル

	γ	$\alpha \cdot \text{Eo}(\text{KN/m}^2)$		ν	
	(KN/m ³)	液状化前	液状化後	液状化前	液状化後
盛土	18.0	80000	8000	0.33	0.33
Asl	9.4	α •Eo	α •Eo /100	0.33	0.499
Asc	19.1	31000	_	0.30	_
Ac2-1	17.2	25200	_	0.30	_
Ac2-2	17.2	25200	_	0.30	_
As2	19.1	84000	_	0.30	_

表2 各地層の物理定数

図4 変形図(X-Y方向:二次元解析)

早十亦位___

Н	α E0	D=5.0m		D=10.0m	
(m)	(MN/m ²)	二次元	三次元	二次元	三次元
	10	0.668	0.438	1.235	1.036
5.0	19	0.421	0.266	0.784	0.639
	40	0.260	0.152	0.496	0.374
	10	1.723	0.993	3.177	2.394
10.0	19	1.023	0.587	1.874	1.426
	40	0.580	0.320	1.063	0.792
	10	2.929	1.476	5.466	3.588
15.0	19	1.690	0.850	3.112	2.087
	40	0.921	0.451	1.690	1.133

± ^

図7は液状化層厚と流動量の三次元効果の関係を示 したものである。液状化層厚 H が厚くなるに従って、 流動量比は小さくなり、三次元効果が大きいことにな る。また、盛土高 D が低い方が流動比は小さくなって いる。これは、盛土高が低いと盛土の横断方向幅が短 くなり、Z 方向への流動の影響により二次元解析との 差が大きくなったためである。一方、三次元効果に対 する液状化層の初期変形係数 $\alpha \cdot E_0$ の影響については あまり差が見られず、その影響は小さいことがわかる。

図8は三次元効果と盛土の横断方向幅Bと液状化層 厚Hの比の関係を示したものである。

ここで、盛土の横断方向幅 B は、台形断面を等価な 矩形断面に置き換えて算出した。B/H が大きくなるに したがって、三次元効果が小さくなり、盛土の横断方 向幅が三次元効果に大きく影響することが分かる。流 動量の三次元効果は次式で近似できる。

$$\delta_{X_{(3D)}} / \delta_{X_{(2D)}} = 1 - e^{-\frac{B}{2H}}$$
 (式1)

地盤流動量と相関の高いパラメータを組合せたFp

図7 液状化層圧と三次元効果

図8 B/Hと三次元効果

図9 2次元解析による最大流動量とFp

値を用いて地盤流動量を評価する。ここで、Fp値は 次式で定義する。

$$F_{\rm P} = \frac{E}{\gamma \cdot \mathbf{D}} \times \frac{1}{\rm H} \tag{₹ 2}$$

ここに、E:初期変形係数 (= $\alpha \cdot E_0$) (kN/m²) γ :盛土単位体積重量 (kN/m³)

H:液状化層厚(m) D:盛土高(m)

図 9 は F_P 値とに二次元解析結果の最大流動量(X 方向)の関係を示したものである。 F_P 値と最大変位 量は非常によい相関を示し、その関係は次式で表すこ とができる。

$$\delta_{X(2D)} = 17.5 \times F_P^{-0.95}$$
 (式 3)

今回の三次元解析では、現在市販されている最速の パソコンを用いているにも関わらず、1ケース最大で 約6時間程度掛かっている。今回提案している式(1)~ (3)より三次元解析相当の最大流動量を簡単に算出で きるので、橋台基礎の概略検討するのに非常に有効で あると考える。

5. 流動化を考慮した基礎の検討

流動圧が作用する橋台基礎の安定照査は塑性率で行 う。橋台は土圧が一方向の偏荷重として常に作用する ため、偏心モーメントが作用する鉄筋コンクリート橋 脚の地震時保有水平耐力法に準じて、エネルギー一定 則により応答塑性率および応答変位を算出する。また、 許容応答塑性率は8程度とした。

図 10 に解析モデルを示す。杭体の曲げモーメント M-曲率々関係はトリニリア型とし、杭軸直角方向の 地盤バネは完全弾塑性型非線形バネとした。また、液 状化による地盤流動は地震の主要動部分が終わってか ら発生するため、作用させる外力は「死荷重+常時土 圧+流動圧」とした。表4に解析に用いた地盤定数を 示す。また、図 11 に有限要素解析で算出した地盤流動 の深度分布を示す。三次元解析の最大変位は二次元解 析の75%程度となっている。

表5に基礎の検討結果を示す。作用させた流動圧は 三次元解析によって算出したものである。降伏変位と 終局変位から算出する応答塑性率は7.26となり、許容 塑性率以下となった。一方、流動圧に二次元解析結果 を用いた場合、杭列本数を増やし剛性を上げる必要が あった。

6. まとめ

地震時液状化により橋台背面盛土が流動化した場 合の地盤流動量の評価に関する検討を行った。その結 果、新たなパラメータ(Fp値)を用いることで、二次 元解析相当の最大地盤流動量の推定が可能である。

また、三次元効果に対する評価式も提案しており、 これらの組合せによって、多大な計算時間を必要とす る三次元解析に相当する流動量を容易に推定できる。 また、流動化を考慮した橋台基礎の検討を行った結果、 今回の設計例では、流動量の算出モデルに三次元性を

表5 橋台基礎の検討結果

杭径及び杭本数				$16 \mathrm{\AA-\phi} 1200 \times 38.5 \mathrm{m}$		
鋼管厚		上杭		t=20mm(SKK 490)×7.0m		
		中杭		t=13mm(SKK490)×3.0m		
		下杭		t=10mm(SKK490)×28.5m		
荷重状態				死荷重+土圧 +流動圧		
地盤状態		液状化		液状化		
		変形係数		8Eo/100		
解析方法		杭		弾塑性		
		地盤		弾塑性		
	基礎の状態 杭体モーメント			降伏	終局	
				4099	5699	
解析 step				586	1000	
	水平	δ	(mm)	168.1	1220.0	
	変位	δа	(mm)		336.2	
安	塑性率	μ			7.26	
定計	押込力	R	(kN)	2251	3406	
算		Ra	(kN)	5227	5227	
	引張力	q	(kN)	-562	-306	
		qa	(kN)	-2301	-2301	

考慮することで杭本数を減らすことができた。

<参考文献>

- 1) (社)日本道路協会:道路橋示方書V耐震設計編,丸善,2002
- 2) 大和、前田、田上、山内:地盤の側方流動量の三次元性に 関する検討,第57回年次学術講演会,2002.9